Notiz / **Note**

Twofold Deprotonated Citric Acid as a Bidentate Ligand of Pentacoordinate Silicon: Synthesis and Structural Characterization of the Zwitterionic λ^5 Si-Spirosilicate Bis [citrato(2 –)- O^3 , O^4] [(dimethylammonio) methyll silicate **Hydrate**

Mathias Miihleisen and Reinhold Tacke"

Institut fur Anorganische Chemie, Universitat Karlsruhe, EngesserstraDe, Geb. 30.45, D-76128 Karlsruhe, Germany

Received March 4. 1994

Key Words: Silicon, pentacoordinate *I* λ^5 Si-Spirosilicate, zwitterionic *I* Citrato(2-)- O^3 , O^4 ligand

The zwitterionic λ^5 S*i*-spirosilicate bis[citrato(2-)- O^3 , O^4][(di**methylammonio)methyl]silicate (4)** was synthesized by reaction of (MeO) ₃SiCH₂NMe₂ (3) with citric acid (molar ratio 1:2) in acetonitrile at room temperature and isolated, after crystallization from water, as the hydrate $4 \cdot H_2O$ (yield 81%). The crystal structure of $4 \cdot H_2O$ was studied by single-crystal X-ray diffraction. The alcoxide oxygen atoms and central carboxylate oxygen atoms of two citrato $(2-)$ ligands and one carbon atom coordinate to the silicon atom of $4 \cdot H_2O$. The coordination polyhedron around the pentacoordinate silicon atom (Si04C framework) can be described as a distorted trigonal bipyramid, the two carboxylate oxygen atoms occupying the axial sites. The λ^5 Si-silicon(IV) complex 4 also exists in solution (DMSO, H_2O).

It has been speculated that the transport of silicon in biological systems might occur via tetra-, penta-, and/or hexacoordinate sibcon species containing bidentate diolato($2-$) ligands^[1]. However, up to now there is no clear experimental evidence for this assumption. Based on the working hypothesis that diolato($2-$) ligands derived from natural hydroxycarboxylic acids may be potential candidates for the transport of pentacoordinate silicon, we became interested in the coordination chemistry of λ^5Si -silicon complexes containing this particular type of ligands and studied related model compounds with an $Si(\overrightarrow{O}O')$, C framework. In previous papers we already reported on the $\lambda^5 S i$ -silicate $1^{[2e]}$ and on the $\lambda^5 S i, \lambda^5 S i'$ disilicate $2^{[2f]}$; these zwitterionic compounds contain glycolato(2-) and $tartrato(4-)$ ligands, respectively. This paper is concerned with the synthesis and structural characterization of the λ^5 Si-silicon complex **4**, the first $\lambda^5 S i$ -silicate containing citrato(2-) ligands^[3]. The studies presented here were carried out as a part of our systematic investigations on zwitterionic spirocyclic λ^5Si -silicon(IV) complexes^[2] (for reviews on pentacoordinate silicon, see ref.^[4]).

Results and Discussion

Citric acid was found to react with **[(dimethylamino)methyl]tri**methoxysilane^[2d] (3) in a molar ratio of 2:1 in acetonitrile at room temperature to yield chemoselectively the zwitterionic $\lambda^5 S i$ -silicon complex $bis[citrato(2-)-O^3, O^4]$ [(dimethylammonio)methyl]silicate **(4)** (Scheme 1). In this molecule the alcoxide oxygen atoms and central carboxylate oxygen atoms of two citrato($2-$) ligands and one carbon atom coordinate to the silicon atom. Obviously, **4** is more stable than the potential isomers **5-7,** which would result from alternative types of coordination of twofold deprotonated citric acid.

Scheme **¹**

The $\lambda^5 S_i$ -silicate 4 was formed spontaneously in a precipitation reaction (Scheme 1) and isolated, after crystallization from water, in 81% yield as the hydrate $4 \cdot H_2O$. Compound $4 \cdot H_2O$ crystallizes in the space group *Pi,* the unit cell containing two enantiomeric zwitterions 4 and two water molecules. The molecular structure of **4** in the crystal is shown in Figure **1;** selected bond distances and angles are listed in the figure legend (for further details, see Experimental).

Chem. Ber. 1994,127,1615-1617 *0* VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994 0009-2940/94/0909- 1615 \$10.00+.25/0

The coordination polyhedron around the silicon atom is a distorted trigonal bipyramid, each bidentate citrato $(2 -)$ - O^3 , O^4 ligand spanning one axial $[O(1), O(3)]$ and one equatorial site $[O(2), O(4)]$. The Berry distortion[5] **of** the coordination polyhedron amounts to 18.7%. Inspection of Figure 1 indicates that the carbonyl oxygen atoms 0(8), 0(10), and O(12) adopt positions close to the silicon atom. However, the respective intramolecular Si-O distances $[3.346(4)-3.538(3)$ Å are not indicative of a significant degree of electronic interaction between these oxygen atoms and the silicon atom. The same holds true for intermolecular **Si.-O** interactions [shortest intermolecular Si \cdots O distance: Si \cdots O(13) 4.762(4) Å].

As would be expected from the presence of seven potential proton-donating groups (one NH and six OH functions) and fifteen potential acceptor atoms $[O(1)$ to $O(14)$ in 4; $O(15)$ in the H_2O molecule] in the asymmetric unit, a complex three-dimensional hydrogen-bonding system in the crystal of $4 \cdot H_2O$ is observed. Based on the relevant geometric parameters, the existence of six intermolecular O-H-O hydrogen bonds and one trifurcated hydrogen bond (with two intra- and one intermolecular N-H.O interac-

Figure 1. Molecular structure of **4** in the crystal of $4 \cdot H_2O$, showing the atomic numbering scheme; selected bond distances [A] and bond angles $[$ °]: Si-O(1) 1.794(2), Si-O(2) 1.666(2), Si-O(3) 1.802(2), $Si-O(4)$ 1.662(2), $Si-C(1)$ 1.888(4); $O(1)$ -Si-O(2) 89.12(10), 0(1)-Si-0(3) 175.07(11), 0(1)-Si-0(4) 89.58(10), O(1)-Si-C(1) 93.51(12), O(2)-Si-O(3) 87.65(11), O(2)-Si-O(4) 127.45(12), O(2)-Si-C(1) 117.87(13), O(3)-Si-O(4) 89.43(10), O(3)-Si-C(1) 91.29(13), $O(4)$ –Si–C(1) 114.64(13)

tions) per asymmetric unit can be assumed. **All** seven proton-donating groups and the acceptor atoms $O(1)$, $O(5)$, $O(6)$, $O(8)$, $O(10)$, $O(12)$, $O(13)$, and $O(15)$ are involved in these hydrogen bonds.

In addition, compound $4 \cdot H_2O$ was structurally characterized by ²⁹Si-CP/MAS-NMR experiments in the solid state and by ${}^{1}H$ -, 13 C-, and ²⁹Si-NMR studies in solution ($[D_6]$ DMSO) (see Experimental). The isotropic ²⁹Si chemical shift (δ = -95.3) observed in the CP/MAS-NMR spectrum clearly characterizes this 29Si resonance as arising from pentacoordinate silicon. As this chemical shift is very similar to that observed in $[D_6]$ DMSO ($\delta = -97.3$), it is concluded that pentacoordination is also present in solution. In addition, the signal of the NH group ($\delta = 7.1$) could be detected in the 'H-NMR spectrum, indicating the existence of an ammonium-type nitrogen atom in solution. As the 'H-NMR spectrum is only compatible with the presence of a tetracarboxylic acid (resonance signal at $\delta = 12.2 - 12.4$; 4H), the potential isomeric structures 6 and 7 can be ruled out. The presence of two CCH₂C (δ = 41.1, 44.2), two NCH₃ (δ = 45.7, 48.5), and three C=O resonances $(\delta = 171.4, 172.4, 175.7)$ in the ¹³C-NMR spectrum reflects the chiral nature of **4** and is in accordance with the type of coordination observed in the crystal of $4 \cdot H_2O$. Thus, the ¹H-, ¹³C-, and 29Si-NMR data (see also Experimental) are consistent with the existence of **4** in [D,]DMSO. Although the isomeric species *5* cannot be totally ruled out by these NMR studies, we favor the zwitterion **4,** because this species is also present in the crystal of **4** \cdot H₂O. This assumption is further supported by the finding that compound **8** (a derivative of **4)** can be easily prepared by reaction of 3 with (S)-lactic acid (molar ratio 1:2; acetonitrile, room temperature), whereas the analogous synthesis of compound **9** (a derivative of 5) by reaction of 3 with (S) -3-hydroxybutyric acid failed^[6].

As $4 \cdot H_2O$ could be crystallized from water, the zwitterion 4 undoubtedly exists in aqueous solution, at least for a certain period of time. From a saturated solution ($c \approx 43$ mmol $\cdot 1^{-1}$, pH ≈ 3 , room temperature), **4** could be recovered as $4 \cdot H_2O$ in 90% yield by slow evaporation of the water, the crystallization process lasting ca. 7 d. In fact, the 29Si-NMR spectrum of a saturated solution of **4** in D₂O shows a resonance signal at $\delta = -97.5$, which is typical of pentacoordinate silicon and therefore can be assigned to 4 δ = -97.3 ([D₆]DMSO), -95.3 (solid state, $4 \cdot H_2O$]. In addition, a resonance signal at $\delta = -53.1$ (dominating signal) was detected, which has to be assigned to a tetracoordinate silicon species whose identity, however, is unknown. At $pH > 7$ (addition of NaOH) only this λ^4 Si-silicon species could be observed in the ²⁹Si-NMR spectrum; however, upon acidification with HCl to $pH = 3$, the resonance signal at $\delta = -97.5$ could be detected again, along with the signal at $\delta = -53.1$. On the other hand, after addition of 40 mol-equiv. of citric acid to a saturated solution of 4 in D_2O only the λ^5 Si-silicon species could be detected in the ²⁹Si-NMR spectrum. Thus, in aqueous solution a chemical equilibrium between **4** and an unknown tetracoordinate silicon species can be postulated.

We thank the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemixhen Industrie* for financial support, and the *Buyer AG* (Leverkusen and Wuppertal-Elberfeld) for support with chemicals. In addition, we would like to thank Priv.-Doz. Dr. *A. Sebuld* (Bayerisches Geoinstitut, Universität Bayreuth) for performing the ²⁹Si-CP/MAS-NMR experiments and Mr. G. Mattern (Institut für Kristallographie, Universitat Karlsruhe) for collecting the X-ray diffraction data.

Experimental

General Procedures: The synthesis of **4** was carried out under dry N2. The organic solvents used were dried and purified according to standard procedures and stored under N_2 . - Melting points: Leitz Laborlux **S** microscope, equipped with a heater (Leitz, Model M 350). $-$ ²⁹Si CP/MAS NMR [59.6 MHz; external standard TMS $(\delta = 0)$; see also ref.^[2d]]: Bruker MSL-300 spectrometer. -¹H NMR {250.1 MHz; solvent [D₆]DMSO, internal standard $[D_5]$ DMSO ($\delta = 2.49$)}, ¹³C NMR {62.9 MHz; solvent $[D_6]$ DMSO, internal standard $[D_6]$ DMSO $(\delta = 39.9)$, and ²⁹Si NMR {49.7 MHz; solvent $[D_6]$ DMSO, internal standard TMS ($\delta = 0$); solvent D₂O, internal standard Me₃Si[CH₂]₃SO₃Na ($\delta = 0$)}: Bruker AC-250 spectrometer. All NMR experiments were carried out at room temp. Assignment of the 13C-NMR data was supported by DEPT experiments. $-$ FD MS (11 kV; $H₂O$ as liquid matrix): Finnigan MAT 711 spectrometer (Varian). The selected m/z values given refer to the isotopes ¹H, ¹²C, ¹⁴N, ¹⁶O, and ²⁸Si.

[(Dimethylamino)methyl]trimethoxysilan **(3):** Synthesis as described in ref.^[2d].

 $Bis[citrato(2-)$ - O^3 , O^4][(dimethylammonio)methyl]silicate *Hydrate* $(4 \cdot H_2O)$: Citric acid $(2.14 \text{ g}, 11.1 \text{ mmol})$ was dissolved in acetonitrile (200 ml). After addition of **3** (995 mg, *5.55* mmol) at room temp. (formation of a precipitate), the reaction mixture was stirred for 1 min and then kept at room temp. for 24 h. The precipitate was filtered off, washed with acetonitrile $(2 \times 10 \text{ ml})$, recrystallized from water (evaporation of the solvent at room temp.; crystallization time ca. 7 d; the first crystals formed after 1 d), and then dried in vacuo (0.1 Torr, 20 $^{\circ}$ C, 6 h); yield 2.19 g (81%) of colorless crystals; dec. at 280°C without melting. $-$ ²⁹Si CP/MAS NMR (v_{rot} 2918 Hz, contact time 4 ms, recycle delay time 3 **s,** 190 transients): δ = -95.3. - ¹H NMR ([D₆]DMSO): δ = 2.40-3.00 (m, 16H, overlapped by the internal standard; CCH_2C , $SiCH_2N$, NCH_3), **3.34(s,2H;H,O),7.l(br.s,1H;NH),12.2-12.4(m,4H;COOH).** $(NCH₃), 48.5 (NCH₃), 51.0 (SiCH₂N), 75.5 (C₃CO), 171.4 (C=O),$ 172.4 (C=O), 175.7 (C=O). $-$ ²⁹Si NMR ([D₆]DMSO): δ = -97.3. $-$ ²⁹Si NMR (D₂O, saturated solution): δ = -53.1, -97.5 (intensity ratio ca. 3:1). - FD MS; m/z (%): 468 (100) [(M_{zwitterion} + H)⁺]. - C₁₅H₂₃NO₁₅Si (485.4): calcd. C 37.11, H 4.78, N 2.89; found C 37.18, H 4.70, N 2.93. $-$ ¹³C NMR ([D₆]DMSO): δ = 41.1 (CCH₂C), 44.2 (CCH₂C), 45.7

Crystal-Structure Determination of $4 \cdot H_2O^{[7]}$: Crystal data: $C_{15}H_{23}NO_{15}Si, M = 485.4 g \cdot mol^{-1}$, space group *P*¹ (No. 2), *a* = 10.124(2), $b = 10.528(3)$, $c = 11.544(2)$ Å, $\alpha = 85.55(2)$, $\beta =$ cm^{-3} , $\mu(Mo-K_a) = 2.05$ cm⁻¹. Intensities for a colorless crystal 65.67(1), $\gamma = 61.82(2)$ °, $V = 977.7(4)$ \AA ³, $Z = 2$, $\rho_{\text{calcd}} = 1.649$ g ·

 $(0.30 \times 0.25 \times 0.20$ mm; crystallization from water by evaporation of the solvent at room temp.) were collected on a four-circle diffractometer (Syntex R3) at -60° C for $2\Theta \le 48^{\circ}$ (Mo-K_o radiation, graphite monochromator). 6136 reflections were measured and 2266 unique reflections used for subsequent refinement with $I >$ $2\sigma(I)$ [opt. ω scan; $R_{int} = 0.066$; *hkl* range: $-13/13$, $-13/13$, $-14/$ 141. The structure was solved by direct methods, and **all** nonhydrogen atoms were refined anisotropically on F^2 , using the program SHELXL-93 (G. M. Sheldrick, Universitat Gottingen, **1993).** All hydrogen atoms were located in difference Fourier syntheses and their positions included in the refinement together with isotropic displacement parameters. Weighting schemes were of the form $w^{-1} = [\sigma^2(F_o^2) + (aP)^2 + bP]$, where $P = (F_o^2 + 2F_c^2)/3$. $R(F) =$ 0.0435, $R_w(F^2) = 0.1016$ for 381 refined parameters $[R(F)] =$ $\Sigma \parallel F_o$ | - | F_o || \angle | Γ ₀ |; $R_w(F^2) = {\Sigma[w(F_o^2 - F_c^2)^2] \Sigma[w(F_o^2)^2]}^{1/2};$ residual electron density $+0.428/-0.444$ e \cdot Å⁻³, located near the silicon atom.

- ['I C. **W.** Sullivan in *Silicon Biochemistry* (Eds.: D. Evered, M. O'Connor), John Wiley & Sons, Chichester, **1986,** pp. 59-89; and literature cited therein.
- ^[2] Selected publications on zwitterionic spirocyclic λ^5 Si-silicon(IV) complexes: $^{[2a]}$ C. Strohmann, R. Tacke, G. Mattern, con(IV) complexes: ¹²⁸¹ C. Strohmann, R. Tacke, G. Mattern, W. F. Kuhs, *J. Organomet. Chem.* **1991**, 403 , $63-71$. $-$ ^{12b}l R. Tacke, F. Wiesenberger, A. Lopez-Mras, J. Sperlich, G. Mattern, Tacke, F. Wiesenberger, A. Lopez-Mras, J. Sperlich, G. Mattern, Z. Naturforsch., B. Chem. Sci. 1992, 47, 1370–1376. – ^[2c] R. Tacke, A. Lopez-Mras, W. S. Sheldrick, A. Sebald, Z. Anorg. Allg. Chem. 1993, 619, 347–358. – Lopez-Mras, P. G. Jones, *Organometallics*, **1994**, 13, 1617–1623. - ^[21] R. Tacke, M. Mühleisen, P. G. Jones, *Angew. Chem.,* **1994, 106,** 1250-1252; *Angew. Chem. Int. Ed. Engl.*
- **1994,** 33, 1186–1188.
To the best of our knowledge, $\lambda^4 Si$ and $\lambda^6 Si$ -silicon(IV) com-^[3] To the best of our knowledge, λ^4Si - and λ^6Si -silicon(IV) complexes containing citrato(2-) ligands have also not been described in the literature.
- L4I [4a1 **S.** N. Tandura, M. G. Voronkov, N. **V.** Alekseev, *Top. Curr. Chem.* **1986,131,99-189.** [4bl W. **S.** Sheldrick, in *The Chemistry of Organic Silicon Compounds, Purt I* (Eds.: **S.** Patai, **Z.** Raptry of Organic Silicon Compounds, Part 1 (Eds.: S. Patai, Z. Rap-
poport), John Wiley & Sons, Chichester, **1989**, pp. 227–303. poport), John Wiley & Sons, Chichester, **1989**, pp. 227–303. –
^[4c] R. R. Holmes, *Chem. Rev.* **1990**, 90, 17–31. – ^[4d] C. Chuit,
R. J. P. Corriu, C. Reye, J. C. Young, *Chem. Rev.* **1993**, 93,
1371–1448.
- r51 Lsa] **E.** L. Muetterties, L. J. Guggenberger, *J Am. Chem. Soc.* **1974, 96,** 1748-1756. R. R. Holmes, J. A. Deiters, *1 Am.* **1974**, 96, 1748–1756. – ^[SD] R. R. Holmes, J. A. Deiters, *J. Am.*
Chem. Soc. **1977**, 99, 3318–3326. – ^[Se] The degree of distortion was calculated by using the dihedral-angle method described in refs.^[5a,b]. All nine dihedral angles and the values for the reference geometry of the ideal square pyramid given in ref.^[5b] were considered for this calculation.
- 0. Dannappel, R. Tacke, unpublished results.
- ['I Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft fur **wissenschaftlich-technische** Information mbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-400904, the names of the authors, and the journal citation.

[84/94]