Notiz / Note

Twofold Deprotonated Citric Acid as a Bidentate Ligand of Pentacoordinate Silicon: Synthesis and Structural Characterization of the Zwitterionic $\lambda^5 Si$ -Spirosilicate Bis[citrato(2-)- O^3 , O^4][(dimethylammonio)methyl]silicate Hydrate

Mathias Mühleisen and Reinhold Tacke*

Institut für Anorganische Chemie, Universität Karlsruhe, Engesserstraße, Geb. 30.45, D-76128 Karlsruhe, Germany

Received March 4, 1994

Key Words: Silicon, pentacoordinate / $\lambda^5 Si$ -Spirosilicate, zwitterionic / Citrato(2-)- O^3, O^4 ligand

The zwitterionic $\lambda^5 Si$ -spirosilicate bis[citrato(2-)-O³,O⁴]](dimethylammonio)methyl]silicate (4) was synthesized by reaction of $(MeO)_3SiCH_2NMe_2$ (3) with citric acid (molar ratio 1:2) in acetonitrile at room temperature and isolated, after crystallization from water, as the hydrate $4 \cdot H_2O$ (yield 81%). The crystal structure of $4 \cdot H_2O$ was studied by single-crystal X-ray diffraction. The alcoxide oxygen atoms and central carboxylate oxygen atoms of two citrato(2-) ligands and one carbon atom coordinate to the silicon atom of $4 \cdot H_2O$. The coordination polyhedron around the pentacoordinate silicon atom (SiO₄C framework) can be described as a distorted trigonal bipyramid, the two carboxylate oxygen atoms occupying the axial sites. The $\lambda^5 Si$ -silicon(IV) complex 4 also exists in solution (DMSO, H_2O).

It has been speculated that the transport of silicon in biological systems might occur via tetra-, penta-, and/or hexacoordinate silicon species containing bidentate diolato(2-) ligands^[1]. However, up to now there is no clear experimental evidence for this assumption. Based on the working hypothesis that diolato(2-) ligands derived from natural hydroxycarboxylic acids may be potential candidates for the transport of pentacoordinate silicon, we became interested in the coordination chemistry of $\lambda^5 Si$ -silicon complexes containing this particular type of ligands and studied related model compounds with an $Si(\overline{OO'})_2C$ framework. In previous papers we already reported on the $\lambda^5 Si$ -silicate $1^{[2e]}$ and on the $\lambda^5 Si, \lambda^5 Si'$ disilicate $2^{[2f]}$; these zwitterionic compounds contain glycolato(2-) and tartrato(4-) ligands, respectively. This paper is concerned with the synthesis and structural characterization of the $\lambda^5 Si$ -silicon complex 4, the first $\lambda^5 Si$ -silicate containing citrato(2-) ligands^[3]. The studies presented here were carried out as a part of our systematic investigations on zwitterionic spirocyclic $\lambda^5 Si$ -silicon(IV) complexes^[2] (for reviews on pentacoordinate silicon, see ref.^[4]).

Results and Discussion

Citric acid was found to react with [(dimethylamino)methyl]trimethoxysilane^[2d] (3) in a molar ratio of 2:1 in acetonitrile at room temperature to yield chemoselectively the zwitterionic $\lambda^5 Si$ -silicon complex bis[citrato(2-)- O^3 , O^4][(dimethylammonio)methyl]silicate (4) (Scheme 1). In this molecule the alcoxide oxygen atoms and central carboxylate oxygen atoms of two citrato(2-) ligands and one carbon atom coordinate to the silicon atom. Obviously, 4 is more stable than the potential isomers 5-7, which would result from alternative types of coordination of twofold deprotonated citric acid.

Scheme 1

The $\lambda^5 Si$ -silicate 4 was formed spontaneously in a precipitation reaction (Scheme 1) and isolated, after crystallization from water, in 81% yield as the hydrate $4 \cdot H_2O$. Compound $4 \cdot H_2O$ crystallizes in the space group $P\overline{1}$, the unit cell containing two enantiomeric zwitterions 4 and two water molecules. The molecular structure of 4 in the crystal is shown in Figure 1; selected bond distances and angles are listed in the figure legend (for further details, see Experimental).

Chem. Ber. 1994, 127, 1615-1617 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

0009-2940/94/0909-1615 \$ 10.00+.25/0

The coordination polyhedron around the silicon atom is a distorted trigonal bipyramid, each bidentate $\operatorname{citrato}(2-)-O^3, O^4$ ligand spanning one axial [O(1), O(3)] and one equatorial site [O(2), O(4)]. The Berry distortion^[5] of the coordination polyhedron amounts to 18.7%. Inspection of Figure 1 indicates that the carbonyl oxygen atoms O(8), O(10), and O(12) adopt positions close to the silicon atom. However, the respective intramolecular Si…O distances [3.346(4)-3.538(3) Å] are not indicative of a significant degree of electronic interaction between these oxygen atoms and the silicon atom. The same holds true for intermolecular Si…O interactions [shortest intermolecular Si…O distance: Si…O(13) 4.762(4) Å].

As would be expected from the presence of seven potential proton-donating groups (one NH and six OH functions) and fifteen potential acceptor atoms [O(1) to O(14) in 4; O(15) in the H₂O molecule] in the asymmetric unit, a complex three-dimensional hydrogen-bonding system in the crystal of $4 \cdot H_2O$ is observed. Based on the relevant geometric parameters, the existence of six intermolecular O-H···O hydrogen bonds and one trifurcated hydrogen bond (with two intra- and one intermolecular N-H···O interac-

Figure 1. Molecular structure of **4** in the crystal of **4** \cdot H₂O, showing the atomic numbering scheme; selected bond distances [Å] and bond angles [°]: Si-O(1) 1.794(2), Si-O(2) 1.666(2), Si-O(3) 1.802(2), Si-O(4) 1.662(2), Si-C(1) 1.888(4); O(1)-Si-O(2) 89.12(10), O(1)-Si-O(3) 175.07(11), O(1)-Si-O(4) 89.58(10), O(1)-Si-C(1) 93.51(12), O(2)-Si-O(3) 87.65(11), O(2)-Si-O(4) 127.45(12), O(2)-Si-C(1) 117.87(13), O(3)-Si-O(4) 89.43(10), O(3)-Si-C(1) 91.29(13), O(4)-Si-C(1) 114.64(13)

tions) per asymmetric unit can be assumed. All seven proton-donating groups and the acceptor atoms O(1), O(5), O(6), O(8), O(10), O(12), O(13), and O(15) are involved in these hydrogen bonds.

In addition, compound 4 · H₂O was structurally characterized by ²⁹Si-CP/MAS-NMR experiments in the solid state and by ¹H-, ¹³C-, and ²⁹Si-NMR studies in solution ([D₆]DMSO) (see Experimental). The isotropic ²⁹Si chemical shift ($\delta = -95.3$) observed in the CP/MAS-NMR spectrum clearly characterizes this ²⁹Si resonance as arising from pentacoordinate silicon. As this chemical shift is very similar to that observed in [D₆]DMSO ($\delta = -97.3$), it is concluded that pentacoordination is also present in solution. In addition, the signal of the NH group ($\delta = 7.1$) could be detected in the ¹H-NMR spectrum, indicating the existence of an ammonium-type nitrogen atom in solution. As the ¹H-NMR spectrum is only compatible with the presence of a tetracarboxylic acid (resonance signal at $\delta = 12.2 - 12.4$; 4 H), the potential isomeric structures 6 and 7 can be ruled out. The presence of two CCH_2C ($\delta =$ 41.1, 44.2), two NCH₃ (δ = 45.7, 48.5), and three C=O resonances $(\delta = 171.4, 172.4, 175.7)$ in the ¹³C-NMR spectrum reflects the chiral nature of 4 and is in accordance with the type of coordination observed in the crystal of $4 \cdot H_2O$. Thus, the ¹H-, ¹³C-, and ²⁹Si-NMR data (see also Experimental) are consistent with the existence of 4 in [D₆]DMSO. Although the isomeric species 5 cannot be totally ruled out by these NMR studies, we favor the zwitterion 4, because this species is also present in the crystal of 4 \cdot H₂O. This assumption is further supported by the finding that compound 8 (a derivative of 4) can be easily prepared by reaction of 3 with (S)-lactic acid (molar ratio 1:2; acetonitrile, room temperature), whereas the analogous synthesis of compound 9 (a derivative of 5) by reaction of 3 with (S)-3-hydroxybutyric acid failed^[6].

As 4 · H₂O could be crystallized from water, the zwitterion 4 undoubtedly exists in aqueous solution, at least for a certain period of time. From a saturated solution ($c \approx 43 \text{ mmol} \cdot 1^{-1}$, pH ≈ 3 , room temperature), 4 could be recovered as $4 \cdot H_2O$ in 90% yield by slow evaporation of the water, the crystallization process lasting ca. 7 d. In fact, the ²⁹Si-NMR spectrum of a saturated solution of 4 in D₂O shows a resonance signal at $\delta = -97.5$, which is typical of pentacoordinate silicon and therefore can be assigned to $4 [\delta =$ -97.3 ([D₆]DMSO), -95.3 (solid state, $4 \cdot H_2O$)]. In addition, a resonance signal at $\delta = -53.1$ (dominating signal) was detected, which has to be assigned to a tetracoordinate silicon species whose identity, however, is unknown. At pH > 7 (addition of NaOH) only this $\lambda^4 Si$ -silicon species could be observed in the ²⁹Si-NMR spectrum; however, upon acidification with HCl to pH = 3, the resonance signal at $\delta = -97.5$ could be detected again, along with the signal at $\delta = -53.1$. On the other hand, after addition of 40 mol-equiv. of citric acid to a saturated solution of 4 in D₂O only the $\lambda^5 Si$ -silicon species could be detected in the ²⁹Si-NMR spectrum. Thus, in aqueous solution a chemical equilibrium between 4 and an unknown tetracoordinate silicon species can be postulated.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, and the Bayer AG (Leverkusen and Wuppertal-Elberfeld) for support with chemicals. In addition, we would like to thank Priv.-Doz. Dr. A. Sebald (Bay-

A 1617

erisches Geoinstitut, Universität Bayreuth) for performing the ²⁹Si-CP/MAS-NMR experiments and Mr. *G. Mattern* (Institut für Kristallographie, Universität Karlsruhe) for collecting the X-ray diffraction data.

Experimental

General Procedures: The synthesis of 4 was carried out under dry N2. The organic solvents used were dried and purified according to standard procedures and stored under N₂. - Melting points: Leitz Laborlux S microscope, equipped with a heater (Leitz, Model M 350). - ²⁹Si CP/MAS NMR [59.6 MHz; external standard TMS $(\delta = 0)$; see also ref.^[2d]]: Bruker MSL-300 spectrometer. – ¹H NMR {250.1 MHz; solvent [D₆]DMSO, internal standard $[D_5]DMSO (\delta = 2.49)$, ¹³C NMR {62.9 MHz; solvent $[D_6]DMSO$, internal standard [D₆]DMSO (δ = 39.9}, and ²⁹Si NMR {49.7 MHz; solvent [D₆]DMSO, internal standard TMS ($\delta = 0$); solvent D_2O_3 , internal standard $Me_3Si[CH_2]_3SO_3Na$ ($\delta = 0$): Bruker AC-250 spectrometer. All NMR experiments were carried out at room temp. Assignment of the ¹³C-NMR data was supported by DEPT experiments. - FD MS (11 kV; H₂O as liquid matrix): Finnigan MAT 711 spectrometer (Varian). The selected m/z values given refer to the isotopes ¹H, ¹²C, ¹⁴N, ¹⁶O, and ²⁸Si.

[(Dimethylamino)methyl]trimethoxysilan (3): Synthesis as described in ref.^[2d].

 $Bis[citrato(2-)-O^3, O^4][(dimethylammonio)methyl]silicate$ Hvdrate $(4 \cdot H_2O)$: Citric acid (2.14 g, 11.1 mmol) was dissolved in acetonitrile (200 ml). After addition of 3 (995 mg, 5.55 mmol) at room temp. (formation of a precipitate), the reaction mixture was stirred for 1 min and then kept at room temp. for 24 h. The precipitate was filtered off, washed with acetonitrile (2 \times 10 ml), recrystallized from water (evaporation of the solvent at room temp.; crystallization time ca. 7 d; the first crystals formed after 1 d), and then dried in vacuo (0.1 Torr, 20°C, 6 h); yield 2.19 g (81%) of colorless crystals; dec. at 280°C without melting. – 29 Si CP/MAS NMR (v_{rot} 2918 Hz, contact time 4 ms, recycle delay time 3 s, 190 transients): $\delta = -95.3. - {}^{1}H$ NMR ([D₆]DMSO): $\delta = 2.40 - 3.00$ (m, 16H, overlapped by the internal standard; CCH2C, SiCH2N, NCH3), 3.34 (s, 2 H; H₂O), 7.1 (br. s, 1 H; NH), 12.2-12.4 (m, 4H; COOH). $- {}^{13}C$ NMR ([D₆]DMSO): $\delta = 41.1$ (CCH₂C), 44.2 (CCH₂C), 45.7 (NCH₃), 48.5 (NCH₃), 51.0 (SiCH₂N), 75.5 (C₃CO), 171.4 (C=O), 172.4 (C=O), 175.7 (C=O). $-{}^{29}$ Si NMR ([D₆]DMSO): $\delta = -97.3$. -²⁹Si NMR (D₂O, saturated solution): $\delta = -53.1, -97.5$ (intensity ratio ca. 3:1). - FD MS; m/z (%): 468 (100) [(M_{zwitterion} + $H)^{+}]. - C_{15}H_{23}NO_{15}Si$ (485.4): calcd. C 37.11, H 4.78, N 2.89; found C 37.18, H 4.70, N 2.93.

Crystal-Structure Determination of $\mathbf{4} \cdot \text{H}_2\text{O}^{[7]}$: Crystal data: C₁₅H₂₃NO₁₅Si, $M = 485.4 \text{ g} \cdot \text{mol}^{-1}$, space group $P\bar{1}$ (No. 2), a = 10.124(2), b = 10.528(3), c = 11.544(2) Å, $\alpha = 85.55(2)$, $\beta = 65.67(1)$, $\gamma = 61.82(2)^\circ$, V = 977.7(4) Å³, Z = 2, $\rho_{calcd.} = 1.649 \text{ g} \cdot \text{cm}^{-3}$, $\mu(\text{Mo-}K_{\alpha}) = 2.05 \text{ cm}^{-1}$. Intensities for a colorless crystal $(0.30 \times 0.25 \times 0.20 \text{ mm}; \text{ crystallization from water by evaporation})$ of the solvent at room temp.) were collected on a four-circle diffractometer (Syntex R3) at -60° C for $2\Theta \le 48^{\circ}$ (Mo-K_a radiation, graphite monochromator). 6136 reflections were measured and 2266 unique reflections used for subsequent refinement with I > $2\sigma(I)$ [opt. ω scan; $R_{int} = 0.066$; *hkl* range: -13/13, -13/13, -14/1414]. The structure was solved by direct methods, and all nonhydrogen atoms were refined anisotropically on F^2 , using the program SHELXL-93 (G. M. Sheldrick, Universität Göttingen, 1993). All hydrogen atoms were located in difference Fourier syntheses and their positions included in the refinement together with isotropic displacement parameters. Weighting schemes were of the form $w^{-1} = [\sigma^2(F_o^2) + (aP)^2 + bP]$, where $P = (F_o^2 + 2F_o^2)/3$. R(F) =0.0435, $R_w(F^2) = 0.1016$ for 381 refined parameters [R(F) = $\Sigma \parallel F_{\rm o} \parallel - \parallel F_{\rm c} \parallel / \Sigma + F_{\rm o} \parallel; R_{\rm w}(F^2) = \{\Sigma[w(F_{\rm o}^2 - F_{\rm c}^2)^2]/\Sigma[w(F_{\rm o}^2)^2]\}^{1/2};$ residual electron density $+0.428/-0.444 \text{ e} \cdot \text{Å}^{-3}$, located near the silicon atom.

- [1] C. W. Sullivan in *Silicon Biochemistry* (Eds.: D. Evered, M. O'Connor), John Wiley & Sons, Chichester, **1986**, pp. 59-89; and literature cited therein.
- [2] Selected publications on zwitterionic spirocyclic λ⁵Si-silicon(IV) complexes: ^[2a] C. Strohmann, R. Tacke, G. Mattern, W. F. Kuhs, J. Organomet. Chem. 1991, 403, 63-71. ^[2b] R. Tacke, F. Wiesenberger, A. Lopez-Mras, J. Sperlich, G. Mattern, Z. Naturforsch., B: Chem. Sci. 1992, 47, 1370-1376. ^[2c] R. Tacke, A. Lopez-Mras, W. S. Sheldrick, A. Sebald, Z. Anorg. Allg. Chem. 1993, 619, 347-358. ^[2d] R. Tacke, A. Lopez-Mras, J. Sperlich, C. Strohmann, W. F. Kuhs, G. Mattern, A. Sebald, Chem. Ber. 1993, 126, 851-861. ^[2c] R. Tacke, A. Lopez-Mras, P. G. Jones, Organometallics, 1994, 13, 1617-1623. ^[2n] R. Tacke, M. Mühleisen, P. G. Jones, Angew. Chem., 1994, 106, 1250-1252; Angew. Chem. Int. Ed. Engl. 1994, 33, 1186-1188.
- [3] To the best of our knowledge, λ⁴Si- and λ⁶Si-silicon(IV) complexes containing citrato(2-) ligands have also not been described in the literature.
- ^[4] ^[4a] S. N. Tandura, M. G. Voronkov, N. V. Alekseev, Top. Curr. Chem. 1986, 131, 99-189. - ^[4b] W. S. Sheldrick, in The Chemistry of Organic Silicon Compounds, Part 1 (Eds.: S. Patai, Z. Rappoport), John Wiley & Sons, Chichester, 1989, pp. 227-303. -^[4c] R. R. Holmes, Chem. Rev. 1990, 90, 17-31. - ^[4d] C. Chuit, R. J. P. Corriu, C. Reye, J. C. Young, Chem. Rev. 1993, 93, 1371-1448.
- ^[5] [^{5a]} E. L. Muetterties, L. J. Guggenberger, J. Am. Chem. Soc. 1974, 96, 1748-1756. - [^{5b]} R. R. Holmes, J. A. Deiters, J. Am. Chem. Soc. 1977, 99, 3318-3326. - [^{5c]} The degree of distortion was calculated by using the dihedral-angle method described in refs.^[5a,b]. All nine dihedral angles and the values for the reference geometry of the ideal square pyramid given in ref.^[5b] were considered for this calculation.
- ^[6] O. Dannappel, R. Tacke, unpublished results.
- [7] Further details of the crystal structure investigation are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-400904, the names of the authors, and the journal citation.

[84/94]